Version: 0.1.0
Commit Hash: b6dc958f6d227d91f09fe3f71178cf5c48f99866
Author: Toan Phung
Category: analysis
Subcategory: quantification
Estimate protein copy numbers and concentrations from deep profile mass spectrometry experiments using the Proteomic Ruler algorithm. Calculates copy numbers per cell, concentrations (nM), mass fractions, and mole fractions without spike-in standards. Based on: Wiśniewski et al. (2014) Mol Cell Proteomics 13:3497-3506. Implementation: https://github.com/noatgnu/proteomicRuler
Proteomic Ruler
Installation
⬇️ Click here to install in Cauldron (requires Cauldron to be running)
Repository:
https://github.com/noatgnu/proteomic-ruler-plugin
Manual installation:
- Open Cauldron
- Go to Plugins → Install from Repository
- Paste:
https://github.com/noatgnu/proteomic-ruler-plugin - Click Install
ID: proteomic-ruler
Version: 0.1.0
Category: analysis
Author: Toan Phung
Description
Estimate protein copy numbers and concentrations from deep profile mass spectrometry experiments using the Proteomic Ruler algorithm. Calculates copy numbers per cell, concentrations (nM), mass fractions, and mole fractions without spike-in standards. Based on: Wiśniewski et al. (2014) Mol Cell Proteomics 13:3497-3506. Implementation: https://github.com/noatgnu/proteomicRuler
Runtime
-
Environments:
python -
Entrypoint:
ruler.py
Inputs
| Name | Label | Type | Required | Default | Visibility |
|---|---|---|---|---|---|
input_file |
Input Protein Intensities File | file | Yes | - | Always visible |
accession_id_col |
Accession ID Column Name | text | Yes | Protein.Ids | Always visible |
mw_column |
Molecular Weight Column Name | text | No | Always visible | |
intensity_columns |
Intensity Columns | column-selector (multiple) | No | - | Always visible |
ploidy |
Ploidy Number | number (min: 1, max: 8, step: 1) | Yes | 2 | Always visible |
total_cellular |
Total Cellular Protein Concentration (pg/pL) | number (min: 50, max: 500, step: 10) | Yes | 200 | Always visible |
get_mw |
Fetch Molecular Weight from UniProt | boolean | No | false | Always visible |
Input Details
Input Protein Intensities File (input_file)
Tab-separated or CSV file containing protein intensities and UniProt accession IDs
Accession ID Column Name (accession_id_col)
Column name containing UniProt accession IDs (e.g., Protein.Ids, Majority protein IDs)
- Placeholder:
Protein.Ids
Molecular Weight Column Name (mw_column)
Column name containing molecular weight in kDa or Da (leave empty to fetch from UniProt)
- Placeholder:
Mass
Intensity Columns (intensity_columns)
Select intensity columns for samples. If empty, auto-detects columns matching 'Intensity*' pattern
Ploidy Number (ploidy)
Ploidy of the organism (1=haploid, 2=diploid, 3=triploid, etc.)
Total Cellular Protein Concentration (pg/pL) (total_cellular)
Total cellular protein concentration in picograms per picoliter (typical: 200 pg/pL)
Fetch Molecular Weight from UniProt (get_mw)
Automatically fetch molecular weights from UniProt if not present in input file (requires internet connection)
Outputs
| Name | File | Type | Format | Description |
|---|---|---|---|---|
ruler_output |
ruler_output.txt |
data | txt | Proteomic Ruler results with copy numbers, concentrations, and rankings |
Requirements
- Python Version: >=3.11
Python Dependencies (External File)
Dependencies are defined in: requirements.txt
proteomicruler>=0.1.6pandas>=2.2.0scipy>=1.11.0seaborn>=0.13.0uniprotparser>=1.2.0click>=8.1.0matplotlib>=3.7.0
Note: When you create a custom environment for this plugin, these dependencies will be automatically installed.
Example Data
This plugin includes example data for testing:
input_file: diann/Reports.pg_matrix.tsv
accession_id_col: Protein.Ids
mw_column:
intensity_columns: [C:\Raja\DIA-NN searches\June 2022\LT-CBQCA-Test_DIA\RN-DS_220106_BCA_LT-IP_01.raw C:\Raja\DIA-NN searches\June 2022\LT-CBQCA-Test_DIA\RN-DS_220106_BCA_LT-IP_02.raw C:\Raja\DIA-NN searches\June 2022\LT-CBQCA-Test_DIA\RN-DS_220106_BCA_LT-IP_03.raw C:\Raja\DIA-NN searches\June 2022\LT-CBQCA-Test_DIA\RN-DS_220106_BCA_LT-MockIP_01.raw C:\Raja\DIA-NN searches\June 2022\LT-CBQCA-Test_DIA\RN-DS_220106_BCA_LT-MockIP_02.raw C:\Raja\DIA-NN searches\June 2022\LT-CBQCA-Test_DIA\RN-DS_220106_BCA_LT-MockIP_03.raw C:\Raja\DIA-NN searches\June 2022\LT-CBQCA-Test_DIA\RN-DS_220106_Pepide-CBQCA_LT-IP_01.raw C:\Raja\DIA-NN searches\June 2022\LT-CBQCA-Test_DIA\RN-DS_220106_Pepide-CBQCA_LT-IP_02.raw C:\Raja\DIA-NN searches\June 2022\LT-CBQCA-Test_DIA\RN-DS_220106_Pepide-CBQCA_LT-IP_03.raw C:\Raja\DIA-NN searches\June 2022\LT-CBQCA-Test_DIA\RN-DS_220106_Pepide-CBQCA_LT-MockIP_01.raw C:\Raja\DIA-NN searches\June 2022\LT-CBQCA-Test_DIA\RN-DS_220106_Pepide-CBQCA_LT-MockIP_02.raw C:\Raja\DIA-NN searches\June 2022\LT-CBQCA-Test_DIA\RN-DS_220106_Pepide-CBQCA_LT-MockIP_03.raw C:\Raja\DIA-NN searches\June 2022\LT-CBQCA-Test_DIA\RN-DS_220106_BCA_LT-WCL_01.raw C:\Raja\DIA-NN searches\June 2022\LT-CBQCA-Test_DIA\RN-DS_220106_BCA_LT-WCL_02.raw C:\Raja\DIA-NN searches\June 2022\LT-CBQCA-Test_DIA\RN-DS_220106_BCA_LT-WCL_03.raw C:\Raja\DIA-NN searches\June 2022\LT-CBQCA-Test_DIA\RN-DS_220106_Pepide-CBQCA_LT-WCL_01.raw C:\Raja\DIA-NN searches\June 2022\LT-CBQCA-Test_DIA\RN-DS_220106_Pepide-CBQCA_LT-WCL_02.raw C:\Raja\DIA-NN searches\June 2022\LT-CBQCA-Test_DIA\RN-DS_220106_Pepide-CBQCA_LT-WCL_03.raw]
ploidy: 2
total_cellular: 200
get_mw: true
Load example data by clicking the Load Example button in the UI.
Usage
Via UI
- Navigate to analysis → Proteomic Ruler
- Fill in the required inputs
- Click Run Analysis
Via Plugin System
const jobId = await pluginService.executePlugin('proteomic-ruler', {
// Add parameters here
});