Version: 1.0.3
Commit Hash: b738db9d108174bbfd919692ba023ce3ef293d41
Author: CauldronGO Team
Category: statistics
Subcategory: quantification
Protein quantification with integrated error propagation using Triqler. Propagates uncertainty from MS1 features through peptide to protein level using a probabilistic graphical model, producing posterior probabilities for differential expression. Based on: The & Käll (2019) Mol Cell Proteomics 18(3):561-570. Repository: https://github.com/statisticalbiotechnology/triqler
Triqler Protein Quantification
Installation
⬇️ Click here to install in Cauldron (requires Cauldron to be running)
Repository:
https://github.com/noatgnu/triqler-plugin
Manual installation:
- Open Cauldron
- Go to Plugins → Install from Repository
- Paste:
https://github.com/noatgnu/triqler-plugin - Click Install
ID: triqler
Version: 1.0.2
Category: statistics
Author: CauldronGO Team
Description
Protein quantification with integrated error propagation using Triqler. Propagates uncertainty from MS1 features through peptide to protein level using a probabilistic graphical model, producing posterior probabilities for differential expression. Based on: The & Käll (2019) Mol Cell Proteomics 18(3):561-570. Repository: https://github.com/statisticalbiotechnology/triqler
Runtime
-
Environments:
python -
Entrypoint:
triqler_runner.py
Inputs
| Name | Label | Type | Required | Default | Visibility |
|---|---|---|---|---|---|
input_format |
Input Format | select (triqler, diann, maxquant) | Yes | triqler | Always visible |
input_file |
Input File | file | Yes | - | Always visible |
file_list_file |
Run Mapping File | file | No | - | Conditional |
fold_change_eval |
Log2 Fold Change Threshold | number (min: 0, max: 10, step: 0) | No | 1 | Always visible |
decoy_pattern |
Decoy Protein Prefix | text | No | decoy_ | Always visible |
min_samples |
Minimum Samples | number (min: 1, max: 20, step: 1) | No | 2 | Always visible |
missing_value_prior |
Missing Value Prior | select (default, DIA) | No | default | Always visible |
num_threads |
Number of Threads | number (min: 0, max: 64, step: 1) | No | 0 | Always visible |
use_ttest |
Use T-Test | boolean | No | false | Always visible |
write_spectrum_quants |
Write Spectrum Quantifications | boolean | No | false | Always visible |
write_protein_posteriors |
Write Protein Posteriors | boolean | No | false | Always visible |
write_group_posteriors |
Write Group Posteriors | boolean | No | false | Always visible |
write_fold_change_posteriors |
Write Fold Change Posteriors | boolean | No | false | Always visible |
Input Details
Input Format (input_format)
Format of the input file. Select 'triqler' for pre-formatted files, 'diann' for DIA-NN report files, or 'maxquant' for MaxQuant evidence.txt
- Options:
triqler,diann,maxquant
Input File (input_file)
For triqler format: PSM file with columns (run, condition, charge, searchScore, intensity, peptide, proteins). For DIA-NN: report.tsv or report.parquet. For MaxQuant: evidence.txt
Run Mapping File (file_list_file)
Required for DIA-NN/MaxQuant: Tab-separated file (NO HEADER) mapping run names to conditions. For DIA-NN: run names must match the 'Run' column. For MaxQuant: must match 'Raw file' column without path. Columns: run, condition, [sample], [fraction]
Log2 Fold Change Threshold (fold_change_eval)
Log2 fold change evaluation threshold for differential expression
Decoy Protein Prefix (decoy_pattern)
Prefix used to identify decoy proteins in reversed database search
- Placeholder:
decoy_
Minimum Samples (min_samples)
Minimum number of peptide quantifications required per protein
Missing Value Prior (missing_value_prior)
Distribution fitting method for missing values. Use DIA for DIA data.
- Options:
default,DIA
Number of Threads (num_threads)
Number of CPU threads to use (0 = use all available cores)
Use T-Test (use_ttest)
Use t-test instead of Bayesian posterior probabilities for differential expression
Write Spectrum Quantifications (write_spectrum_quants)
Output consensus spectrum quantification data
Write Protein Posteriors (write_protein_posteriors)
Export protein posterior distributions to a separate file
Write Group Posteriors (write_group_posteriors)
Export treatment group posterior distributions to a separate file
Write Fold Change Posteriors (write_fold_change_posteriors)
Export fold change posterior distributions to a separate file
Outputs
| Name | File | Type | Format | Description |
|---|---|---|---|---|
protein_results |
proteins.tsv |
data | tsv | Protein-level quantification results with q-values, posterior error probabilities, fold change estimates, and gene names |
condition_mapping |
condition_mapping.tsv |
data | tsv | Mapping between numerical condition IDs and original condition names |
triqler_input |
triqler_input.tsv |
data | tsv | Converted triqler input file (only generated when using DIA-NN or MaxQuant format) |
spectrum_quants |
spectrum_quants.tsv |
data | tsv | Consensus spectrum quantification data |
protein_posteriors |
protein_posteriors.tsv |
data | tsv | Protein posterior distributions |
group_posteriors |
group_posteriors.tsv |
data | tsv | Treatment group posterior distributions |
fold_change_posteriors |
fold_change_posteriors.tsv |
data | tsv | Fold change posterior distributions |
Requirements
- Python Version: >=3.10
Python Dependencies (External File)
Dependencies are defined in: requirements.txt
triqler>=0.6.0click>=8.0.0pyarrow>=10.0.0
Note: When you create a custom environment for this plugin, these dependencies will be automatically installed.
Usage
Via UI
- Navigate to statistics → Triqler Protein Quantification
- Fill in the required inputs
- Click Run Analysis
Via Plugin System
const jobId = await pluginService.executePlugin('triqler', {
// Add parameters here
});