Triqler Protein Quantification

Version: 1.0.3

Commit Hash: b738db9d108174bbfd919692ba023ce3ef293d41

Author: CauldronGO Team

Category: statistics

Subcategory: quantification

Protein quantification with integrated error propagation using Triqler. Propagates uncertainty from MS1 features through peptide to protein level using a probabilistic graphical model, producing posterior probabilities for differential expression. Based on: The & Käll (2019) Mol Cell Proteomics 18(3):561-570. Repository: https://github.com/statisticalbiotechnology/triqler

README

Triqler Protein Quantification

Installation

⬇️ Click here to install in Cauldron (requires Cauldron to be running)

Repository: https://github.com/noatgnu/triqler-plugin

Manual installation:

  1. Open Cauldron
  2. Go to PluginsInstall from Repository
  3. Paste: https://github.com/noatgnu/triqler-plugin
  4. Click Install

ID: triqler
Version: 1.0.2
Category: statistics
Author: CauldronGO Team

Description

Protein quantification with integrated error propagation using Triqler. Propagates uncertainty from MS1 features through peptide to protein level using a probabilistic graphical model, producing posterior probabilities for differential expression. Based on: The & Käll (2019) Mol Cell Proteomics 18(3):561-570. Repository: https://github.com/statisticalbiotechnology/triqler

Runtime

  • Environments: python

  • Entrypoint: triqler_runner.py

Inputs

Name Label Type Required Default Visibility
input_format Input Format select (triqler, diann, maxquant) Yes triqler Always visible
input_file Input File file Yes - Always visible
file_list_file Run Mapping File file No - Conditional
fold_change_eval Log2 Fold Change Threshold number (min: 0, max: 10, step: 0) No 1 Always visible
decoy_pattern Decoy Protein Prefix text No decoy_ Always visible
min_samples Minimum Samples number (min: 1, max: 20, step: 1) No 2 Always visible
missing_value_prior Missing Value Prior select (default, DIA) No default Always visible
num_threads Number of Threads number (min: 0, max: 64, step: 1) No 0 Always visible
use_ttest Use T-Test boolean No false Always visible
write_spectrum_quants Write Spectrum Quantifications boolean No false Always visible
write_protein_posteriors Write Protein Posteriors boolean No false Always visible
write_group_posteriors Write Group Posteriors boolean No false Always visible
write_fold_change_posteriors Write Fold Change Posteriors boolean No false Always visible

Input Details

Input Format (input_format)

Format of the input file. Select 'triqler' for pre-formatted files, 'diann' for DIA-NN report files, or 'maxquant' for MaxQuant evidence.txt

  • Options: triqler, diann, maxquant

Input File (input_file)

For triqler format: PSM file with columns (run, condition, charge, searchScore, intensity, peptide, proteins). For DIA-NN: report.tsv or report.parquet. For MaxQuant: evidence.txt

Run Mapping File (file_list_file)

Required for DIA-NN/MaxQuant: Tab-separated file (NO HEADER) mapping run names to conditions. For DIA-NN: run names must match the 'Run' column. For MaxQuant: must match 'Raw file' column without path. Columns: run, condition, [sample], [fraction]

Log2 Fold Change Threshold (fold_change_eval)

Log2 fold change evaluation threshold for differential expression

Decoy Protein Prefix (decoy_pattern)

Prefix used to identify decoy proteins in reversed database search

  • Placeholder: decoy_

Minimum Samples (min_samples)

Minimum number of peptide quantifications required per protein

Missing Value Prior (missing_value_prior)

Distribution fitting method for missing values. Use DIA for DIA data.

  • Options: default, DIA

Number of Threads (num_threads)

Number of CPU threads to use (0 = use all available cores)

Use T-Test (use_ttest)

Use t-test instead of Bayesian posterior probabilities for differential expression

Write Spectrum Quantifications (write_spectrum_quants)

Output consensus spectrum quantification data

Write Protein Posteriors (write_protein_posteriors)

Export protein posterior distributions to a separate file

Write Group Posteriors (write_group_posteriors)

Export treatment group posterior distributions to a separate file

Write Fold Change Posteriors (write_fold_change_posteriors)

Export fold change posterior distributions to a separate file

Outputs

Name File Type Format Description
protein_results proteins.tsv data tsv Protein-level quantification results with q-values, posterior error probabilities, fold change estimates, and gene names
condition_mapping condition_mapping.tsv data tsv Mapping between numerical condition IDs and original condition names
triqler_input triqler_input.tsv data tsv Converted triqler input file (only generated when using DIA-NN or MaxQuant format)
spectrum_quants spectrum_quants.tsv data tsv Consensus spectrum quantification data
protein_posteriors protein_posteriors.tsv data tsv Protein posterior distributions
group_posteriors group_posteriors.tsv data tsv Treatment group posterior distributions
fold_change_posteriors fold_change_posteriors.tsv data tsv Fold change posterior distributions

Requirements

  • Python Version: >=3.10

Python Dependencies (External File)

Dependencies are defined in: requirements.txt

  • triqler>=0.6.0
  • click>=8.0.0
  • pyarrow>=10.0.0

Note: When you create a custom environment for this plugin, these dependencies will be automatically installed.

Usage

Via UI

  1. Navigate to statisticsTriqler Protein Quantification
  2. Fill in the required inputs
  3. Click Run Analysis

Via Plugin System

const jobId = await pluginService.executePlugin('triqler', {
  // Add parameters here
});